464 research outputs found

    Learning and Matching Multi-View Descriptors for Registration of Point Clouds

    Full text link
    Critical to the registration of point clouds is the establishment of a set of accurate correspondences between points in 3D space. The correspondence problem is generally addressed by the design of discriminative 3D local descriptors on the one hand, and the development of robust matching strategies on the other hand. In this work, we first propose a multi-view local descriptor, which is learned from the images of multiple views, for the description of 3D keypoints. Then, we develop a robust matching approach, aiming at rejecting outlier matches based on the efficient inference via belief propagation on the defined graphical model. We have demonstrated the boost of our approaches to registration on the public scanning and multi-view stereo datasets. The superior performance has been verified by the intensive comparisons against a variety of descriptors and matching methods

    Chemotactic response and adaptation dynamics in Escherichia coli

    Get PDF
    Adaptation of the chemotaxis sensory pathway of the bacterium Escherichia coli is integral for detecting chemicals over a wide range of background concentrations, ultimately allowing cells to swim towards sources of attractant and away from repellents. Its biochemical mechanism based on methylation and demethylation of chemoreceptors has long been known. Despite the importance of adaptation for cell memory and behavior, the dynamics of adaptation are difficult to reconcile with current models of precise adaptation. Here, we follow time courses of signaling in response to concentration step changes of attractant using in vivo fluorescence resonance energy transfer measurements. Specifically, we use a condensed representation of adaptation time courses for efficient evaluation of different adaptation models. To quantitatively explain the data, we finally develop a dynamic model for signaling and adaptation based on the attractant flow in the experiment, signaling by cooperative receptor complexes, and multiple layers of feedback regulation for adaptation. We experimentally confirm the predicted effects of changing the enzyme-expression level and bypassing the negative feedback for demethylation. Our data analysis suggests significant imprecision in adaptation for large additions. Furthermore, our model predicts highly regulated, ultrafast adaptation in response to removal of attractant, which may be useful for fast reorientation of the cell and noise reduction in adaptation.Comment: accepted for publication in PLoS Computational Biology; manuscript (19 pages, 5 figures) and supplementary information; added additional clarification on alternative adaptation models in supplementary informatio

    The effect of time-to-surgery on outcome in elderly patients with proximal femoral fractures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Whether reducing time-to-surgery for elderly patients suffering from hip fracture results in better outcomes remains subject to controversial debates.</p> <p>Methods</p> <p>As part of a prospective observational study conducted between January 2002 and September 2003 on hip-fracture patients from 268 acute-care hospitals all over Germany, we investigated the relationship of time-to-surgery with frequency of post-operative complications and one-year mortality in elderly patients (age ≥65) with isolated proximal femoral fracture (femoral neck fracture or pertrochanteric femoral fracture). Patients with short (≤12 h), medium (> 12 h to ≤36 h) and long (> 36 h) times-to-surgery, counting from the time of the fracture event, were compared for patient characteristics, operative procedures, post-operative complications and one-year mortality.</p> <p>Results</p> <p>Hospital data were available for 2916 hip-fracture patients (mean age (SD) in years: 82.1 (7.4), median age: 82; 79.7% women). Comparison of groups with short (n = 802), medium (n = 1191) and long (n = 923) time-to-surgery revealed statistically significant differences in a few patient characteristics (age, American Society of Anesthesiologists ratings classification and type of admission) and in operative procedures (total hip endoprosthesis, hemi-endoprosthetic implants, other osteosynthetic procedures). However, comparison of these same groups for frequency of postoperative complications revealed only some non-significant associations with certain complications such as post-operative bleeding requiring treatment (early surgery patients) and urinary tract infections (delayed surgery patients). Both unadjusted rates of one-year all-cause mortality (between 18.1% and 20.5%), and the multivariate-adjusted hazard ratios (HR for time-to-surgery: 1.04; p = 0.55) showed no association between mortality and time-to-surgery.</p> <p>Conclusion</p> <p>Although this study found a trend toward more frequent post-operative complications in the longest time-to-surgery group, there was no effect of time-to-surgery on mortality. Shorter time-to-surgery may be associated with somewhat lower rates of post-operative complications such as decubitus ulcers, urinary tract infections, thromboses, pneumonia and cardiovascular events, and with somewhat higher rates of others such as post-operative bleeding or implant complications.</p

    Efficacy of tranexamic acid in reducing blood loss in posterior lumbar spine surgery for degenerative spinal stenosis with instability: a retrospective case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Degenerative spinal stenosis and instability requiring multilevel spine surgery has been associated with large blood losses. Factors that affect perioperative blood loss include time of surgery, surgical procedure, patient height, combined anterior/posterior approaches, number of levels fused, blood salvage techniques, and the use of anti-fibrinolytic medications. This study was done to evaluate the efficacy of tranexamic acid in reducing blood loss in spine surgery.</p> <p>Methods</p> <p>This retrospective case control study includes 97 patients who had to undergo surgery because of degenerative lumbar spinal stenosis and instability. All operations included spinal decompression, interbody fusion and posterior instrumentation (4-5 segments). Forty-six patients received 1 g tranexamic acid intravenous, preoperative and six hours and twelve hours postoperative; 51 patients without tranexamic acid administration were evaluated as a control group. Based on the records, the intra- and postoperative blood losses were measured by evaluating the drainage and cell saver systems 6, 12 and 24 hours post operation. Additionally, hemoglobin concentration and platelet concentration were reviewed. Furthermore, the number of red cell transfusions given and complications associated with tranexamic acid were assessed.</p> <p>Results</p> <p>The postoperative hemoglobin concentration demonstrated a statistically significant difference with a p value of 0.0130 showing superiority for tranexamic acid use (tranexamic acid group: 11.08 g/dl, SD: 1.68; control group: 10.29 g/dl, SD: 1.39). The intraoperative cell saver volume and drainage volume after 24 h demonstrated a significant difference as well, which indicates a less blood loss in the tranexamic acid group than the control group. The postoperative drainage volume at12 hours showed no significant differences; nor did the platelet concentration Allogenic blood transfusion (two red cell units) was needed for eight patients in the tranexamic acid group and nine in the control group because of postoperative anemia. Complications associated with the administration of tranexamic acid, e.g. renal failure, deep vein thrombosis or pulmonary embolism did not occur.</p> <p>Conclusions</p> <p>This study suggests a less blood loss when administering tranexamic acid in posterior lumbar spine surgery as demonstrated by the higher postoperative hemoglobin concentration and the less blood loss. But given the relatively small volume of blood loss in the patients of this study it is underpowered to show a difference in transfusion rates.</p

    Human Computation and Convergence

    Full text link
    Humans are the most effective integrators and producers of information, directly and through the use of information-processing inventions. As these inventions become increasingly sophisticated, the substantive role of humans in processing information will tend toward capabilities that derive from our most complex cognitive processes, e.g., abstraction, creativity, and applied world knowledge. Through the advancement of human computation - methods that leverage the respective strengths of humans and machines in distributed information-processing systems - formerly discrete processes will combine synergistically into increasingly integrated and complex information processing systems. These new, collective systems will exhibit an unprecedented degree of predictive accuracy in modeling physical and techno-social processes, and may ultimately coalesce into a single unified predictive organism, with the capacity to address societies most wicked problems and achieve planetary homeostasis.Comment: Pre-publication draft of chapter. 24 pages, 3 figures; added references to page 1 and 3, and corrected typ

    Ancient Chinese medicine and mechanistic evidence of acupuncture physiology

    Get PDF
    Acupuncture has been widely used in China for three millennia as an art of healing. Yet, its physiology is not yet understood. The current interest in acupuncture started in 1971. Soon afterward, extensive research led to the concept of neural signaling with possible involvement of opioid peptides, glutamate, adenosine and identifying responsive parts in the central nervous system. In the last decade scientists began investigating the subject with anatomical and molecular imaging. It was found that mechanical movements of the needle, ignored in the past, appear to be central to the method and intracellular calcium ions may play a pivotal role. In this review, we trace the technique of clinical treatment from the first written record about 2,200 years ago to the modern time. The ancient texts have been used to introduce the concepts of yin, yang, qi, de qi, and meridians, the traditional foundation of acupuncture. We explore the sequence of the physiological process, from the turning of the needle, the mechanical wave activation of calcium ion channel to beta-endorphin secretion. By using modern terminology to re-interpret the ancient texts, we have found that the 2nd century b.c. physiologists were meticulous investigators and their explanation fits well with the mechanistic model derived from magnetic resonance imaging (MRI) and confocal microscopy. In conclusion, the ancient model appears to have withstood the test of time surprisingly well confirming the popular axiom that the old wine is better than the new

    Predicted Auxiliary Navigation Mechanism of Peritrichously Flagellated Chemotactic Bacteria

    Get PDF
    Chemotactic movement of Escherichia coli is one of the most thoroughly studied paradigms of simple behavior. Due to significant competitive advantage conferred by chemotaxis and to high evolution rates in bacteria, the chemotaxis system is expected to be strongly optimized. Bacteria follow gradients by performing temporal comparisons of chemoeffector concentrations along their runs, a strategy which is most efficient given their size and swimming speed. Concentration differences are detected by a sensory system and transmitted to modulate rotation of flagellar motors, decreasing the probability of a tumble and reorientation if the perceived concentration change during a run is positive. Such regulation of tumble probability is of itself sufficient to explain chemotactic drift of a population up the gradient, and is commonly assumed to be the only navigation mechanism of chemotactic E. coli. Here we use computer simulations to predict existence of an additional mechanism of gradient navigation in E. coli. Based on the experimentally observed dependence of cell tumbling angle on the number of switching motors, we suggest that not only the tumbling probability but also the degree of reorientation during a tumble depend on the swimming direction along the gradient. Although the difference in mean tumbling angles up and down the gradient predicted by our model is small, it results in a dramatic enhancement of the cellular drift velocity along the gradient. We thus demonstrate a new level of optimization in E. coli chemotaxis, which arises from the switching of several flagellar motors and a resulting fine tuning of tumbling angle. Similar strategy is likely to be used by other peritrichously flagellated bacteria, and indicates yet another level of evolutionary development of bacterial chemotaxis

    Accurate Encoding and Decoding by Single Cells: Amplitude Versus Frequency Modulation

    Get PDF
    Cells sense external concentrations and, via biochemical signaling, respond by regulating the expression of target proteins. Both in signaling networks and gene regulation there are two main mechanisms by which the concentration can be encoded internally: amplitude modulation (AM), where the absolute concentration of an internal signaling molecule encodes the stimulus, and frequency modulation (FM), where the period between successive bursts represents the stimulus. Although both mechanisms have been observed in biological systems, the question of when it is beneficial for cells to use either AM or FM is largely unanswered. Here, we first consider a simple model for a single receptor (or ion channel), which can either signal continuously whenever a ligand is bound, or produce a burst in signaling molecule upon receptor binding. We find that bursty signaling is more accurate than continuous signaling only for sufficiently fast dynamics. This suggests that modulation based on bursts may be more common in signaling networks than in gene regulation. We then extend our model to multiple receptors, where continuous and bursty signaling are equivalent to AM and FM respectively, finding that AM is always more accurate. This implies that the reason some cells use FM is related to factors other than accuracy, such as the ability to coordinate expression of multiple genes or to implement threshold crossing mechanisms

    Reduced total energy expenditure and physical activity in cachectic patients with pancreatic cancer can be modulated by an energy and protein dense oral supplement enriched with n-3 fatty acids

    Get PDF
    The aim of the study was to assess the total energy expenditure (TEE), resting energy expenditure (REE) and physical activity level (PAL) in home-living cachectic patients with advanced pancreatic cancer. The influence of an energy and protein dense oral supplement either enriched with or without the n-3 fatty acid eicosapentaenoic acid (EPA) and administered over an 8-week period was also determined. In total, 24 patients were studied at baseline. The total energy expenditure was measured using doubly labelled water and REE determined by indirect calorimetry. Patients were studied at baseline and then randomised to either oral nutritional supplement. Measurements were repeated at 8 weeks. At baseline, REE was increased compared with predicted values for healthy individuals (1387(42) vs 1268(32) kcal day-1, P=0.001), but TEE (1732(82) vs 1903(48) kcal day-1, P=0.023) and PAL (1.24(0.04) vs 1.50) were reduced. After 8 weeks, the REE, TEE and PAL of patients who received the control supplement did not change significantly. In contrast, although REE did not change, TEE and PAL increased significantly in those who received the n-3 (EPA) enriched supplement. In summary, patients with advanced pancreatic cancer were hypermetabolic. However, TEE was reduced and this was secondary to a reduction in physical activity. The control energy and protein dense oral supplement did not influence the physical activity component of TEE. In contrast, administration of the supplement enriched with EPA was associated with an increase in physical activity, which may reflect improved quality of life

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation
    corecore